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Abstract

Grouped Panel Data Models have many advantages over fully homogeneous or fully heteroge-
neous panel data models. [Examples we found in the results]. This thesis creates the
groupedpaneldatamodels-package, creating the first Python-package to implement any Grouped
Panel Data Model. The Python-package has been thoroughly verified and has been shown to be
implemented properly. [Sentence about the results]
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1 Introduction

Panel Data Models have been gaining traction in Econometrics. One of the main books on Panel
Data Models, Baltagi (2021, p. vii), believes that part of the rise of these models is caused by
the availability of software packages in programming languages such as Python, R, and Stata.
Research has shown that the availability of models in programming languages can often increase
the usage of these models, as Choodari-Oskooei and Morris (2016) reports that there are many
well-known examples of model usage after a good and stable software implementation was made,
additionally the lack of software implementations can in many cases be a key barrier to wider
adoption (Anselin, 2010; Pullenayegum et al., 2015; Grayling and Wheeler, 2019). Notably,
Wahlquist et al. (2018) reported that just providing replication code for new statistical models
doubled the citation rate for freely accessible articles1.1.

Panel Data Models have already existed for quite a while, specifically the Fixed Effects mod-
els, as the first papers on these models were published a while ago (Mundlak, 1961; Mundlak,
1978). A core assumption of the most Fixed Effects estimations is that the coefficients are par-
tially homogeneous, implying that the individual effect stays constant over time, and that the slope
coefficients are the same for each individual. Research has shown that individual effects are often
not homogeneous over time and that shocks that effect many individuals slightly differently often
occur (Giannone and Lenza, 2010; Carneiro et al., 2003; Cawley et al., 1997) and thus recently
many researchers have been proposing alternative models that resolve this issue. One of the most
well-known models proposing an alternative to the constant individual effects is the Interactive
Fixed Effects model proposed by Bai (2009).

However, even for this model the assumption of complete homogeneity is made for the slope
coefficients, thus assuming that the effect of the regressor is the same for each individual. A lot of
research has already shown that in many cases this assumption does not hold (Pesaran and Smith,
1995; Holly et al., 2010; Dogan and Seker, 2016). The opposite, fully heterogeneous models,
are difficult and almost impossible to estimate because of the incidental parameters problem, i.e.,
there are (almost) as many variables as datapoints.

Recently, many models have been introduced that use a middle ground. Well-known papers as
Bonhomme and Manresa (2015), Ando and Bai (2016), and Bonhomme, Lamadon, et al. (2022),
have introduced the concept of Grouped Panel Data Models, where coefficients may differ between
individuals, however there are a limited number of groups of differing coefficients, making it much
easier to estimate those values. Many of the models that have been introduced for these papers
have already seen some usage, as for example at the time of writing Bonhomme and Manresa
(2015) has been cited 617 times1.2, and their usage appears to be increasing over time. Just this
model has been used to link the effect of debt on different types of countries (Gómez-Puig et al.,
2022), to link carbon emissions to income inequality (Grunewald et al., 2017), and it has been
used to show that income risk is quite high in Spain and that this risk is higher for younger and
poorer people (Arellano et al., 2022).

Many other Grouped Panel Data Models have also been introduced, such as Ando and Bai
(2016), Su, Shi, et al. (2016), Su and Ju (2018), Ke et al. (2016), Mehrabani (2023), and Mugnier
(2024) and many more. However, most of the models these papers have introduced do not have
software packages available to estimate them and there has been to our knowledge not been any

1.1This paper specifically looked at the field of biostatistics, but the point still stands
1.2According to Google Scholar
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publicly available Python package that implements one of these models. This is odd as Python
is one of the most commonly used programming languages within Econometrics (Danielsson and
Aguirre, 2020). There are some software implementations available that implement some of these
models in other programming languages, e.g., the PMDIF R-package by Ando and Fayad (2022),
implements a model somewhat similar to the one proposed by Ando and Bai (2016), and the
classifylasso Stata-package by Huang et al. (2024) implements the model introduced by Su, Shi,
et al. (2016). However, none are available in Python, and many of these packages are not complete,
either estimating a different model or only estimating the parameters without standard errors. This
may limit the usage of these models, as creating a correct software implementation of these models
can be quite challenging. For most models is it often also quite unclear what the quality of the
inference that is derived by the paper is, as many papers such as Ando and Bai (2016), Su, Shi,
et al. (2016), and Su and Ju (2018) did not include any results from a simulation study on the
accuracy of their standard errors.

This thesis aims to fill thise gaps by answering the research question: “How can Grouped Panel
Data Models, specifically Grouped Fixed, and Interactive Effects models effectively be incorpo-
rated in a Python package and what is the performance of this package?”. To answer this question
this thesis is split up into a few different sections. Section 2 examines Grouped Panel Data Models,
it introduces their origin, examines the two main groups (Fixed and Interactive Effects models),
and compares the different algorithms that have been used to implement these models. Section 3
looks into the already existing software implementations of Grouped Panel Data Models. Section
4 summarizes the main challenges that can be experienced when writing econometric models into
software. Section 5 then summarizes how the proposed package can be used; Section 6 states some
method to ensure correctness and numerical verifiability of these implementations and Section 7
does a simulation study of this package with a performance evaluation. Finally, Section 8 has the
concludes the current work.
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2 Grouped Panel Data Models

Before introducing the Python-package developed in this paper, first a quick introduction on Panel
Data (specifically Fixed Effects and Interactive Effects) is given. After that the different models
that have been implemented in the package are introduced, accompanied by their algorithms and
the justifications of each model. Finally, doing inference based on these models is discussed.

2.1 Panel Data Models

Before diving into Grouped Panel Models, we quickly examine Panel Data Models first and specif-
ically focus on Fixed and Interactive Fixed Effects models. This section is mostly focused on the
most relevant Panel Data Models for this paper. Much more complete books about Panel Data
Models are Hsiao (2014) and Baltagi (2021), which this short introduction is based on.

Panel Data Models include data observed over multiple units over multiple periods and models
them simultaneously (Hsiao, 2014). A well-known example of Panel Data is the Panel Study of
Income Dynamics (Daumler et al., 2025), this dataset has tracked many thousands of individuals
and families since 1968 in the United States. It tracks income, employment activity, health and
many other statistics and was used to understand income dynamics, the effects of poverty and
much more. This data set is mainly modeled using Fixed Effects and other Panel Data Models.
Panel Data models have many advantages (Hsiao, 2014, pp. 4–10), since they often provide more
accurate inference, are good at emulating dynamic relationships, controlling for omitted variables
and can (in some cases) simplify computation and statistical inference.

One of the most basic Panel Data Models is the Fixed Effects Model, as introduced by Mund-
lak (1978), this model can be written as in Equation 2.1,

yit = x′itβ + αi + εit, i ∈ {1, ..., N} (2.1)

t ∈ {1, ..., T} (2.2)

where αi is a scaler constant which represents the individual effect of the individual i, β is a K×1

vector representing the effect of representing the marginal effect of each regressor xit and εit is the
i.i.d. error with mean zero. To estimate this model, first β is estimated by running a standard OLS
estimation on the demeaned variables of the model2.1. Then αi could be recovered as follows,
âi = ȳi − x̄′iβ̂ (Hsiao, 2014, pp. 34–39).

However, heterogeneity can also occur over time, there are many different papers written on
how to deal with this heterogeneity. One of the most well-known models that deals with hetero-
geneity is introduced by Bai (2009), which introduced the Interactive Fixed Effects Model. This
paper proposed the following model,

yit = x′itβ + λ′
iFt + εit, i ∈ {1, ..., N}, (2.3)

t ∈ {1, ..., T}, (2.4)

where Ft is a vector of r unobserved common factors that differ over time and λi is a vector of
factor loadings that represent how each individual unit responds to these factors. Thus ensuring

2.1The demeaned version of the model is defined as, yit − ȳi = (xit − x̄i)
′β + uit.
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that this model allows for unobserved heterogeneity over time and over units (and additionally
models cross-sectional dependence). To ensure that the model remains identifiable, the following
restriction is imposed F ′F/T = Ir, where F = [F1, F2, ..., FT ].

This model is estimated using a Principle Components (PC) approach, Bai (2009) specifically
proposes an iterative estimation method that estimates β first using Least Squares and then es-
timates the factors and factor loadings from the residuals by estimating the eigenvectors using
Singular Value Decomposition. This procedure is repeated until convergence is reached2.2.

Often these models need to be modified such that the slope coefficients and individual effects
of these models are homogeneous (over individuals and time). As was stated in the introduction,
this assumption is often not justified and this can lead to incorrect estimations. However, often this
assumption is required to avoid the incidental parameters problem as discovered by Nickell (1981).
This problem states that for short dynamic panels, i.e. panels where T is low, the estimation
procedure produces biased estimates for αi even as N → ∞, as αi always remains correlated with
yi. This assumption and problem are some of the biggest challenges for Panel Data Models as
stated by Hsiao (2014, pp. 10–13). Grouped Panel Data Models have been created to solve both
these problems.

2.2 Grouped Models

The first paper to introduce such a model was Sun (2005). The paper argued that while at the
time Panel Data Models often have to assume to be homogeneous, assuming the opposite of ho-
mogeneity, complete heterogeneity, often introduces a lot of other challenges, as were stated pre-
viously. Therefore, instead of assuming either complete homogeneity or complete hetrogeneity,
Sun (2005), proposes a middle ground, where there are a certain number of groups with unknown
group membership, where within each group the parameters are homogeneous, between the groups
they are heterogeneous. An example of such a model could be the following,

yit = x′itβgi + αgi + εit, i ∈ {1, ..., N} (2.5)

t ∈ {1, ..., T}

where gi ∈ {1, ..., G} represents is the grouping individual i is in and G represents the number of
groups, and thus βgi represents the coefficient value of group gi is in.

Sun (2005), argues that there could some theoretical justifications for grouped parameters, it
argues that different model parameters could be caused by different type of steady states that may
have been caused by different initial conditions. For example it has been shown that economic
growth of different countries often converge around common groups of parameters (Sun, 2002).
Hahn and Moon (2010) argues that there are often just a finite number of steady states, because
many Game Theory games tend to have a finite number of steady states. Sun (2005) also justifies
that splitting up a sample based on other pre-specified variables can often quite arbitrary, and
having some sort of predefined algorithm can remove this arbitrariness.

The advantage of these Grouped Panel Data Models is that it solves the incidental parameters
problem. As when we let G be fixed, then even when T grows very slowly (for example for short
panels), letting N → ∞, still ensures that the bias of the parameters goes to zero (Hahn and Moon,
2010).

2.2The paper actually proposes multiple methods for estimating the model, though this method is generally preferred
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Recently, Grouped Panel Data Models have been gaining some traction, and thus many pa-
pers presenting new models have been proposed. All these models roughly fall into two groups:
Grouped Fixed Effects Models and Grouped Interactive Fixed Effects Models.

2.3 Grouped Fixed Effects Models

Many different panel data models have been proposed that introduce some sort of Grouped Fixed
Effects Model. Most models are mostly based on two techniques: a clustering-based methods and
penalization-based methods. Both techniques are quite different, the clustering-based technique
computes the objective value of each clustering that is considered and then stores the best one,
whereas the penalization-based techniques applies a penalization to the likelihood function which
is then optimized.

2.3.1 Clustering-Based Method

The most well-known and most cited paper in this field is Bonhomme and Manresa (2015), which
proposed a clustering-based estimation method. The paper proposes the following model,

yit = x′itβ + αgi,t + εit, i ∈ {1, ..., N} (2.6)

t ∈ {1, ..., T}

which allows for heterogeneity over (grouped) individuals and heterogeneity over time. Addi-
tionally the paper proposed another model which also allows for heterogeneity over (grouped)
individuals over the coefficients2.3, which is the main model that will be considered in this paper,

yit = x′itβgi + αgi,t + εit, i ∈ {1, ..., N} (2.7)

t ∈ {1, ..., T}

To estimate this model the following minimization problem needs to be solved,

QBM(β, α, g) =
N∑
i=1

T∑
t=1

(
yit − x′itβgi − αgi,t

)2 (2.8)

(β̂, α̂, ĝ) = argmin
(β,α,g)∈B×AGT×ΓG

QBM(β, α, g), (2.9)

where B,AGT and ΓG are the parameter spaces for each parameter respectively, and where
g = {g1, ..., gN} which denotes the specific grouping for each individual i. As this minimization
problem is very difficult to solve directly, the paper suggested Algorithm 1 to solve this problem.

This method splits up the optimization problem into two different problems, first a clustering
problem and then a standard OLS problem. Since each problem is relatively easy solve, this
algorithm is quite easy to solve. However, since this is a non-convex optimization problem, many
iterations need to be run to find the true optimum, until convergence is reached, where τ denotes
the acceptable tolerance.

2.3These models will be the main focus of this thesis. Additionally this paper also proposed a unit-specific model as
defined in Appendix A.
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Algorithm 1 Bonhomme and Manresa (2015)
1: procedure BONHOMMEMANRESA(y, x, τ iterations)
2: for k in iterations do
3: Generate some starting values for β̂(0), α̂(0), e.g. estimate a starting value based on a

part of the sample
4: Set iteration number j = 1

5: while ∥QBM(α̂(j), β̂(j), ĝ(j))−QBM(α̂(j−1), β̂(j−1), ĝ(j−1)∥ > τ do
6: Compute groupings for all i ∈ {1, ..., N}

ĝ
(j)
i = argmin

g∈{1,...,G}

T∑
t=1

(
yit − x′itβg − αgt

)
(2.10)

7: Compute α
(j)
g for all g ∈ {1, ..., G}

α̂
(j)
gt =

1∑N
i=1 1{ĝ

(j)
i = g}

N∑
i=1

1{ĝ(j)i = g}(yi − x′itβ̂
(j)
ĝi

) (2.11)

8: Compute β
(j)
g for all g ∈ {1, ..., G}

β̂(j)
g = argmin

βg

N∑
i=1

T∑
t=1

(yit − α̂
ĝ
(j)
i ,t

− x′itβg)
2 (2.12)

9: Update iteration number j+ = 1

10: end while
11: If the objective value QBM(β̂(j), α̂(j), ĝ(j)) store the parameters as α̂ = α̂(j), β̂ =

β̂(j), ĝ = ĝ(j), if not ignore the results
12: end for
13: return α̂, β̂, ĝ

14: end procedure

Since this is not ideal, the paper proposed an alternative Variable Neighborhood Search (VNS)
algorithm as can be found in Appendix A.2, this algorithm does not need many repeated iterations
to find the true optimum, however it is often much slower than the previous algorithm.

To estimate the number of groups information criteria can be used, the paper introduces the
following BIC criterion to estimate the number of groups. Usually the BIC criterion is defined as
follows,

BIC = −2 logL+ k log n, (2.13)

where L is the maximized log-likelihood, k is the number of parameters in the model and n is
the number of observations in the model (Schwarz, 1978). In the supplement of Bonhomme and
Manresa (2015) the following BIC criterion is derived,

BIC(G) =
1

NT

N∑
i=1

T∑
t=1

(yit − α̂ĝi,t − x′itβ̂ĝi)
2 + σ̂2

ε

GT +N +K

NT
logNT, (2.14)
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where σ̂2
ε is defined as the variance of the residuals. In the package a variant for this BIC is

implemented which is just a rescaled version of this BIC criterion is implemented, as can be seen
in Section 2.6.

The paper proposes multiple techniques to compute the standard errors. There is the standard
large-N and T inference, though also the paper also proposes a much more complex large N ,
fixed T inference. Finally, it proposes a Bootstrap method, similarly to the method proposed in
Section 2.5. The standard large-N , T inference method is defined as follows,

V̂ar(α̂gt) =

∑
i:ĝi=g v̂

2
it

N̂g

, (2.15)

V̂ar(β̂g) =
1

N̂gT
Σ̂−1
βg Ω̂βgΣ̂

−1
βg , where (2.16)

Σ̂βg =
1

N̂gT

∑
i:ĝi=g

∑
(xit − x̄ĝit)(xit − x̄ĝit)

′, (2.17)

Ω̂βg =
1

N̂gT

∑
i:ĝi=g

T∑
t=1

T∑
s=1

v̂itv̂is(xit − x̄ĝit)(xit − x̄ĝit)
′, (2.18)

where v̂it represents the residuals, and is defined as v̂it = yit − x′itβĝi − α̂ĝi,t. Additionally, N̂g

is the estimated number entries in group g, i.e. N̂g =
∑N

i=1 1{ĝi = g}. This method remains
valid even as for there is serial correlation between the residuals, other methods of estimating Ω̂βg

need to be used if the errors are related to each other in some sort of other way. Large N , fixed T

inference is outside of the scope of this paper, though may be implemented in a future version of
the package.

2.3.2 Penalization-Based Method

An alternative method for a Fixed Effects Model was proposed by Su, Shi, et al. (2016), which took
an alternative path to estimate the groupings. It introduced a Classifier-Lasso method, where the
estimator is penalized to enforce groupings between the parameters. This is quite a generalizable
method and can easily be applied to many different problems. Additionally, by using this technique
it remains possible to use simple optimization methods. An example of a model that can be
estimated, as was proposed by the paper itself, is the following,

yit = x′itβgi + αi + εit, i ∈ {1, ..., N} (2.19)

t ∈ {1, ..., T}

this model contains an individual effect αi, and grouped coefficients βgi . To estimate this model
the following minimization problem is introduced,

(b̂, α̂, β̂) = argmin
(b,α,β)∈BN×AGT×BG

N∑
i=1

T∑
t=1

(
yit − x′itbi − αi

)2
+

κ

N

N∑
i=1

G∏
γ=1

∥bi − βγ∥2, (2.20)

where a new parameter bi is introduced. This represents the coefficient of the individual i, with-
out adding a penalization, this model would just represent a fully heterogeneous model. Addi-
tionally γ is introduced, which represents the group number. By introducing the penalization

10



κ
N

∑N
i=1

∏G
γ=1∥bi − βγ∥, the minimization procedure is incentivized (for a κ large enough) to

group these coefficients together to the values βg, which represents the β coefficient of group γ.
Since the penalization contains a product, the penalization term for an individual i is minimized
when bi ∈ {βγ , γ ∈ G}2.4. To retrieve gi, which represents grouping each individual i belongs,
we can simply state that gi =

∑G
γ=1 γ1{bi = βγ}.

In the paper a simple generalization of this method was proposed,

Qκ
SSP(b, α, β) =

1

NT

N∑
i=1

T∑
t=1

f(yit, xit; bi, αi) +
κ

N

N∑
i=1

G∏
γ=1

∥bi − βγ∥2, (2.21)

where f(·) is a convex function that needs to be minimized to estimate the model. In most cases it
is generally advantageous to use profiling, which estimates αi first, by demeaning first2.1. Chang-
ing the objective function to,

Qκ
SSP(b, β) =

1

NT

N∑
i=1

T∑
t=1

f(yit, xit; α̂i(b), bi) +
κ

N

N∑
i=1

G∏
γ=1

∥bi − βγ∥2, (2.22)

where α̂(b) = argminα
∑N

i=1

∑T
t=1 f(yit, xit; bi, αi). This paper does not consider implementing

the generalization, though it does use the profiling, demeaning technique.
The optimization problem is not a simple convex problem that could easily be solved with

an convex optimization algorithm such as the BFGS method (Broyden, 1970; Fletcher, 1970;
Goldfarb, 1970; Shanno, 1970). However, it is conditionally convex for the case that βγ is fixed
for all γ except one, meaning that we can optimize over each of these separately using a convex
optimizers.

Qκ
SSP,γ,k(b, βγ) = Qκ

SSP(b, [β̂
(k)
1 , ..., β̂

(k)
γ−1, βγ , β̂

(k−1)
γ+1 , ..., β̂

(k−1)
G ]) (2.23)

Therefore the paper proposes Algorithm 2, where f(·) is defined as the squared error as was
proposed in the initial model in Equation 2.20.
The algorithm cleverly makes use of the conditionaly convexity of the problem, by only optimizing
over a part of the problem, preferably with a convex optimizer. For this algorithm it is important
that a reasonable value is chosen for κ. Preferably κ should be chosen using an Information
Criterion. The generalized information criteria defined in Section 2.6, could be used as a valid
information criterion, as it is just a rescaled version of the same information criterion.

The standard errors on β̂g are computed similarly as was written in Equation 2.352.5 and the
standard errors individual effects αi are computed as follows,

V̂ar(α̂i) =
1

T

T∑
t=1

v̂2it, (2.26)

where v̂it = yit − x′itβ̂ĝi − α̂i, where ĝi = argminγ∥bi − βγ∥.

2.4I.e., when bi is one of the grouped coefficients βγ
2.5Where the residuals are computed as stated below.
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Algorithm 2 Su, Shi and Phillips Algorithm

1: procedure SUSHIPHILLIPS(y, x, κ, τ, iterations)
2: Start with initial values for b̂(0)i and β̂(0), s.t. bi ̸= βγ ∀i, γ
3: k = 1
4: while |QSSP(b̂

(k), β̂(k))−QSSP(b̂
(k−1), β̂(k−1))| > τ do

5: for γ in G do
6: Optimize for b and βγ , with starting value b̂(k) and β̂(k)

argminb,βγ
Qκ

SSP,γ,k(b, βγ) = (2.24)

argminb,βγ

N∑
i=1

T∑
t=1

(
yit − x′itbi − αi

)2 (2.25)

+
κ

N

N∑
i=1

∥bi − βγ∥
γ−1∏
j=1

∥bi − β̂
(k)
j ∥

G∏
j=γ+1

∥b̂(γ−1)
i − β̂

(k−1)
j ∥

7: end for
8: k += 1
9: end while

10: end procedure

2.3.3 Alternative Models

There are many different models that have been based on these two models and with some simple
modifications many of these other models could have been implemented. For example Bonhomme,
Lamadon, et al. (2022) proposed a generalized version of the Bonhomme and Manresa (2015),
which supports many non-linear models.

Additionally, there are many extensions that have been proposed to Su, Shi, et al. (2016). For
example, Wang et al. (2018) suggests using an alternative model based on the CARDS (Clustering
Algorithm in Regression via Data-driven Segmentation) penalty, this does not require a prede-
fined number of groups to be defined and allows for the number of groups G → ∞. Similarly,
Mehrabani (2023) suggest an alternative penalty PAFGL (Pairwise Adaptive Group-Fused Lasso)
penalty, which is fully convex and thus much easier and faster to compute.

These models have not (yet) been implemented in the Python-package due to time constraints.
These constraints forced the choice to implement the models from the most popular and most cited
models first, however these three models are good candidates for future expansions of the package.

2.4 Grouped Interactive Fixed Effects Models

Much of the most recent research has gone into Grouped Interactive Fixed Effects, as Interac-
tive Fixed Effects models nest Fixed Effects models. This means that these models allow richer
forms of unobserved heterogeneity, as they also allow to easily model much more cross-sectional
heterogeneity and serial dependence.

As all Grouped Interactive Fixed Effects models are extensions of Grouped Fixed Effects
models, there are once again two main types of models: clustering-based models and penalization-
based models.
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2.4.1 Clustering-Based Model

The clustering-based method proposed in Ando and Bai (2016), is very similar to and based on the
model proposed by Bonhomme and Manresa (2015). The model the paper introduces is defined
as follows2.6.

yit = x′itβgi + f ′
gi,tλgi,i + εit, i ∈ {1, ..., N} (2.27)

t ∈ {1, ..., T}

where each group has their own factor Fgi,t and each individual has their own factor loading λgi,i.
To ensure that this model is identifiable [TBD]. Notably, in the specific case that λgi,i = 1 ∀gi, i,
this model can be easily rewritten to the Grouped Fixed Effects model of the previous subsection.
To estimate this model the following minimization procedure needs to be solved,

QAB(β, f, λ, g) =
N∑
i=1

T∑
t=1

(
yit − x′itβgi − f ′

gi,tλgi,i

)2 (2.28)

(β̂, f̂ , λ̂, ĝ) = argmin
(β,f,λ,g)∈B×FGT×ΛGN×ΓG

QAB(β, f, λ, g) (2.29)

where FGT and ΛGN are the parameter spaces of these coefficients. The algorithm proposed by
Ando and Bai (2016) is quite similar to the algorithm to the algorithm proposed by Bonhomme
and Manresa (2015), with an additional step to compute the factors and the factor loadings.
Notably the algorithm proposed above is slightly different than the algorithm proposed in the pa-
per itself, where it was stated that for large N and T no multiple iterations are needed. However,
to retain the ability to estimate for non-large N,T , these multiple iterations originally proposed
in Bonhomme and Manresa (2015) are retained. Additionally, the paper proposed adding an addi-
tional penalty term to deal with High Dimensional Panel Data Models, this is implemented in the
package, however due to the additional complexity, this is described in the Appendix B.

To decide the number of groups that are required, the paper suggests using Information Criteria
as implemented in Section 2.6. Inference is also quite similar to the previous methods, however
the paper does not derive any standard errors for the factor loadings λgi,i or the factors Ft. It does
derive the standard errors for β, however notation the original paper uses is quite complex, thus a
much simpler notation is introduced in this paper2.7

V̂ar(β̂g) =
1

N̂gT
Σ̂−1
βg Ω̂βgΣ̂

−1
βg , where (2.35)

Σ̂βg =
1

N̂gT

∑
i:ĝi=g

∑
(x̃it − x̃ĝit)(x̃it − x̃ĝit)

′, (2.36)

Ω̂βg =
1

N̂gT

∑
i:ĝi=g

T∑
t=1

T∑
s=1

v̂itv̂is(x̃it − x̃ĝit)(x̃it − x̃ĝit)
′, where (2.37)

v̂it = yit − x′itβĝi − λ̂ĝi,iF̂ĝi,t, (2.38)
2.6The paper also introduces a model without grouped coefficients, this model is also implemented in the package,

and is defined in Appendix B.
2.7Technically, this is asymptotically equivalent, but not exactly the same. For the samples sizes tested in this paper,

N >> T , thus this should not be considered a problem.
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Algorithm 3 Ando and Bai (2016)
1: procedure ANDOBAI(y, x, r, τ , iterations)
2: for j in iterations do
3: Generate some starting values for β̂(0), α̂(0), e.g. estimate a starting value based on a

part of the sample
4: Compute initial factors and clusters as in Equation ??
5: Set iteration number k = 1

6: while |QAB(β̂
(k), f̂ (k), λ̂(k), ĝ(k))−QAB(β̂

(k−1), f̂ (k−1), λ̂(k−1), ĝ(k−1))| > τ do
7: Compute groupings for all i ∈ {1, ..., N}

ĝ
(k)
i = argmin

g∈{1,...,G}

T∑
t=1

(
yit − x′itβg − f ′

g,tλg,i

)
(2.30)

8: Compute factors Fg,t and factor loadings Λg,i for all g ∈ {1, ..., G} by computing
the Principle Components of the residuals

ŵit = yit − x′itβ̂
(k)
ĝi

(2.31)

F̂g = eig(Ŵ ′
gŴg)r, (2.32)

where Ŵg are the stacked partial residuals ŵit for which ĝi = g

λ̂
(k)
gi,i

= Fgiyi/T (2.33)

9: Compute β
(k)
g for all g ∈ {1, ..., G}

β̂(k)
g = argmin

βg

N∑
i=1

T∑
t=1

(yit − f̂
ĝ
(k)
i ,t

λ̂
ĝ
(k)
i ,i

− x′itβg)
2 (2.34)

10: end while
11: end for
12: If QAB(β̂

(k), f̂ (k), λ̂(k), ĝ(k)) is lower than the previous objective value, store
(β̂, f̂ , λ̂, ĝ) = (β̂(k), f̂ (k), λ̂(k), ĝ(k))

13: end procedure
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2.4.2 Penalization-Based Model

The final model implemented in the paper is introduced by Su and Ju (2018) and uses the same
C-Lasso method as introduced by Su, Shi, et al. (2016). The model proposed is almost similar to
Ando and Bai (2016), as it is defined as,

yit = x′itβgi + F ′
tλi + εit, i ∈ {1, ..., N} (2.39)

t ∈ {1, ..., T} (2.40)

where the factors are not grouped anymore. Notably, when Ft has G components, it can be rewrit-
ten to the model described in the previous section. This means that the following model needs to
be optimized to be estimated,

(β̂, f̂ , λ̂, ĝ) = argmin
(β,α,g)∈B×FGT×ΛGN×ΓG

N∑
i=1

T∑
t=1

(
yit − x′itβgi − f ′

gi,tλgi,i

)2
, (2.41)

. (2.42)

Similarly to Su, Shi, et al. (2016), to achieve the groupings a penalization technique Su and Ju
(2018) uses a C-Lasso penalization technique. However, alternatively to Su, Shi, et al. (2016), it
is not useful to insert the squared errors in the objective function, as optimizing that model will
not take into account the restrictions on Ft. Therefore the paper proposes the following objective
function that can be optimized,

QSJ(b, β) =
1

T

T∑
r=R+1

µr

(
1

N

N∑
i=1

(Yi −Xibi)(Yi −Xibi)
′

)
(2.43)

+
κ

N

N∑
i=1

G∏
γ=1

∥bi − βγ∥2

where Yi = [yi1, ..., yiT ] and Xi = [xi1, ..., xiT ] and where µr(A) returns the r’th largest eigen-
value of the matrix A, and where R is the number of factors that this model includes. Each
eigenvalue represents the strength of a common factor. Minimizing the sums of the smallest com-
mon factors than represents all the possible common factors that the model did not include in a
common factor, essentially rewarding the optimizer to ensure that as much of the common factors
are attributed to them. Since Su and Ju (2018) is based on the algorithm proposed by Su, Shi, et
al. (2016), this problem is only conditionally convex. Therefore Algorithm 4 is proposed, which
similarly to the algorithm of Su, Shi, et al. (2016) optimizes each of the convex blocks separately,
which uses the following optimization function,

Qκ
SJ,γ,k(b, βγ) = Qκ

SJ(b, [β̂
(k)
1 , ..., β̂

(k)
γ−1, βγ , β̂

(k−1)
γ+1 , ..., β̂

(k−1)
G ]).
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Algorithm 4 Su and Ju (2018)
1: procedure SUJU(y, x, κ,R, iterations)
2: Start with initial values for b̂(0)i and β̂(0), s.t. bi ̸= βγ ∀i, γ
3: k = 1
4: while |QSJ(b̂

(k), β̂(k))−QSJ(b̂
(k−1), β̂(k−1))| > τ do

5: for γ in G do
6: Optimize for b and βγ , with starting value b̂(k) and β̂(k)

argminb,βγ
Qκ

SJ,γ,k(b, βγ) =

argminb,βγ

1

T

T∑
r=R+1

µr

(
1

N

N∑
i=1

(Yi −Xibi)(Yi −Xibi)
′

)

+
κ

N

N∑
i=1

∥bi − βγ∥
γ−1∏
j=1

∥bi − β̂
(k)
j ∥

G∏
j=γ+1

∥b̂(γ−1)
i − β̂

(k−1)
j ∥

7: end for
8: k += 1
9: end while

10: Solve for the factors and compute the factor loadings[
1

NT

N∑
i=1

(Yi −Xiβgi)(Yi −Xiβgi)
′

]
F = FVNT ,

where VNT is a diagonal matrix of the R0 largest eigenvalues

λi = F̂ ′(Yi −Xiβ̂gi)/T

11: end procedure

The paper states explicitly that under the assumption of i.i.d. normal errors the information
criteria stated in Section 2.6 can be used. Additionally, to do inference exactly the same standard
errors as for Ando and Bai (2016) can be used for β.

2.5 Inference and Bootstrap

Each of the papers included a derivation for inference of the estimated parameters, however these
are valid for large N,T , meaning that they may not be valid for all samples. Some papers (notably
Bonhomme and Manresa (2015)) have derived alternative standard errors, for example for large
N , but fixed T , however implementing these methods is quite complex and outside of the scope
of this thesis.

Luckily, there are alternative methods to estimate the standard errors and confidence intervals
of these models. The most well-known of these methods is the Bootstrap-method, which this
package also includes. The advantage of this method is that it can just simple be implemented
once, and then used for all models.

There are many different possible Bootstrap implementations, each with their own strengths
and weaknesses. However, as each estimation procedure is quite expensive, a Bootstrap method
that requires very few replications should be considered. This implies that percentile-based Boot-
strap methods should not be considered, as they require way too many replications. Thus the
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decision was made to implement a standard error, normal approximation non-parameteric Boot-
strap technique, as is described in Algorithm 5, as was suggested by Efron and Tibshirani (1993,
pp. 45, 168–169).

Algorithm 5 Bootstrap Standard Error and Confidence Interval Estimates

1: procedure BOOSTRAP(nbootstrap)
2: Regularly estimate the model first, store estimates in parameter θ̂
3: for i in nboostrap do
4: Generate a new sample of the data with replacement
5: Estimate the model again on this sample, store estimates in coefficient θ̂(i)

6: end for
7: Compute the standard errors ŝeθ = Var(θ(i))
8: Compute the confidence intervals (θ̂ − z1−α/2 · ŝeθ, θ̂ + z1−α/2 · ŝeθ)
9: end procedure

The advantage of this method is that we can get a good estimate of the standard errors, without
having to rely on the assumptions made in inference (often large N and T ). Some research has
shown that doing more than 100 Bootstrap replications does not lead to improvements in the
estimation of standard errors, thus this has been set as the default in the package (Goodhue et al.,
2012).2.8

2.6 Group Selection and Information Criteria

Each model tends to include their an Information Criterion to allow a user to test the number of
groups that need to be included. To simplify the implementation of these information criteria, a
generalized formula of these criteria is implemented. Under the assumption that the residuals are
i.i.d. and normally distributed the following information criteria can be defined,

BIC = n log(σ̂2
ε) + k log n, (2.44)

AIC = n log(σ̂2
ε) + 2k, (2.45)

HQIC = n log(σ̂2
ε) + 2k log log n, (2.46)

where σ̂2
ε is defined as the variance of the residuals, n (which in each of these models is NT for

balanced panel data) the number of datapoints and k is the number of parameters in the model
(Priestley, 1982; Manini et al., 2020; Lütkepohl, 2004).

Research has shown that each Information Criterion has its own advantages and performs best
in different use cases. Research has shown that the AIC tends to be preferred when predictive
performance needs to be optimized, the BIC tends to be preferred for model identification and the
HQIC is some sort of balance in between these two Information Criteria (Sin and White, 1996).

2.8Further improvements could be made by implementing a Balanced Bootstrap method, as was suggested by David-
son et al. (1986).
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3 Existing Software Packages for Grouped Panel Data Models

Grouped Panel Data Models have gained popularity since the publication of Bonhomme and
Manresa (2015). While no Python-package implementing these methods have been created to
our knowledge3.1, other software has been created and implemented. This section gives a quick
overview of the software packages that have been created that already implement Grouped Panel
Data Models and suggest (potential) challenges for these packages.

Together with their paper, Bonhomme and Manresa (2015), published Stata program to repli-
cate such that users could their findings, but also to use their model itself. Their model mainly
programmed in FORTRAN, and is therefore quite fast3.2, they have also implemented a Boot-
strap estimation procedure for the standard errors. The code for the Stata library is however only
available in compiled form, and thus it is quite difficult to create your own modifications to these
models. Additionally, it appears that the compiled version of the code is only available for Win-
dows computers. Bonhomme, Lamadon, et al. (2022) also published replication code, however
this code has not been published in a package.

The PMDIF packages claims (Ando and Fayad, 2022) to have implemented the model pro-
posed by Ando and Bai (2016). However, this code implements a slightly different model, namely
the following model,

yit = x′itβgi + f ′
gi,tλgi,i + εit, i ∈ {1, ..., N}, (3.1)

t ∈ {1, ..., T}.

This may still be a very useful model to implement, however it is not the same model as proposed
in the paper. A big advantage of this package is that the code is written for Generalizable Linear
Models (GLM), meaning that as long as you have the linking function, you can use this model for
some sort of non-linear model.

Some of the penalized estimators have also been implemented in software libraries or pack-
ages. The classifylasso command, as implemented by Huang et al. (2024) is available for Stata and
the classo package is available for R as implemented by Gao (2020). The classifylasso package
seems to be slightly more developed as it is able to also estimate standard errors, confidence inter-
vals and uses information criteria to automatically determine the number of groups. This makes
this package quite easy to use and very complete, however the estimation procedure tends to be
quite slow. The classo package has implemented the very fast ECOS optimizer, which may give it
an advantage in estimation speed. However it does not automatically estimate the standard errors,
thus requireing that users of this method manually implement some sort of Bootstrap method to
estimate the standard errors.

The last package that is available is the PAFGL library that is available for R, as has been
implemented by Haimerl (2024). This package implements the model specified in Mehrabani
(2023), which has not been implemented in this version of the package. This package appears
to be quite complete, providing the estimates for the coefficients, standard errors, information
criteria. Notably it also supports endogeneous regressors, by supporting the Penalized Generalized

3.1A Python-package which creates some functions required by for the Grouped Fixed Effects estimator by Bon-
homme, Lamadon, et al. (2022) has been published in Lamadon (2021). The package however does not fully provide
an estimator, just some helper functions.

3.2Which is likely much faster than the same method implemented in this paper, when parallelism is disabled.
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Method of Moments estimator suggested by Mehrabani (2023), which no other package (including
this one) provides.

Each of these packages have their own advantages and disadvantages, however using compiled
code or fast optimizers such as the Stata package of Bonhomme and Manresa (2015) and the classo
library by Gao (2020) respectively can ensure that estimations are quick. Implementing a very
complete package that has support for automatic group selection such as the classifylasso package
can make usage very easy, which should be quite important when implementing a package.
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4 Programming Considerations and Challenges

Before diving deep into the challenges the previous algorithms might face, it is important that the
program remains and useful such that other users can also use and modify it. The best practices
as described in Wilson et al. (2014), have (mostly) been used to ensure maintainability and ease
of use. While this paper describes too many best practices to include in this thesis, some of the
most important ones have been included. For example, a version control system is used, and all
the code is written is the most high-level language as possible. However, unit-testing, where each
part of the code is tested seperately, is not (yet) implemented due to the complexity of this task,
though it would guarantee much more stable usage.

Hajivassiliou (2018) states some of the main computational challenges that often occur when
implementing econometric models. There are four main challenges when implementing the mod-
els in this package: numerical stability, memory challenges, optimizer selection and finally per-
formance. Each of these four challenges need to be solved appropriately, as incorrect implemen-
tations may give incorrect results, or even worse gives incorrect results for just some inputs.

4.1 Numerical Stability

Almost all computing is done using floating point numbers, these floating point numbers have a
limited accuracy (Goldberg, 1991). This means that there are often (very) small rounding errors
between the computations. When an algorithm is numerically unstable, these small errors can
compound and these errors can dramatically increase. Some operations without proper precautions
may be highly sensitive and thus be numerically unstable.

A well-known example, also present in this package, is the standard closed-form OLS solution
(X ′X)−1X ′y, however inverting a matrix can be very unstable if X ′X is near singular (Golub and
Reinsch, 1970). Thus there are some techniques that ensure that this inversion is not required, such
as QR Decomposition or Singular Value Decomposition (SVD). These techniques are also used in
this package4.1.

Additionally, the penalty term of both C-Lasso algorithms may be prone to overfitting, how-
ever this could easily be prevented by setting proper values for κ. Similarly, factor extraction of
Ando and Bai (2016) and Su and Ju (2018) may be highly unstable if the number of factors is set
too high.

4.2 Memory

The second challenge is memory usage, it is of vital importance that the package uses memory
properly, as memory usage may be limited. This package uses numpy arrays, which are much
more efficient compared to default data types implemented in Python (such as Lists, Tuples or
DataFrames). This efficiency can be achieved as all elements are stored in a contiguous memory
block using a single datatype, making it more expensive for arrays to grow dynamically, but much
more memory efficient (Harris et al., 2020). Generally, this package limits the creation of copies
of arrays, as these operations, even for numpy-arrays are quite slow.

To limit memory usage always the proper datatype is chosen, for example groupings are stored
as unsigned 8-bit integers, meaning that the package supports up to 256 groups. Additionally, all

4.1QR Decomposition when X is quite stable (as it is slightly faster than SVD) and SVD when this may not be the
case.
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computations are done using 32-bit floating point numbers as during testing these provided plenty
of precision and are half the memory size of regular 64 bit floating point numbers4.2.

4.3 Optimizer Selection

If a function needs to be optimized, a proper optimization method needs to be chosen as not all are
able to deal with every objective function. There are many components that could be considered
when selecting a proper method, however in our case there are two main ones: 1) convexity and
2) dimensionality.

First, the two algorithms that use optimizers (Su, Shi, et al. (2016) and Su and Ju (2018)) both
minimize (conditionally) convex objective functions. This means that each objective function has
a global minimum and thus gradient-based could be used. Secondly, the number of parameters
that each objective function has, can vary quite a bit, as this is based on the number of coefficients
in β, the number of groups G. In some cases where G and X are quite large, dimensionality can
be enormous, therefore a scaleable optimizer with low memory requirements needs to be chosen
(Nash, 2014). In our package the L-BFGS method as proposed by Liu and Nocedal (1989) was
chosen, as this method has low memory usage and is quite fast (and in addition is implemented in
Python).

4.4 Performance

This may be one of the most difficult challenges to solve for these models, as all models introduced
in the previous section are quite computationally heavy. A small data set with N = 100 and
T = 25 can easily running the model from Bonhomme and Manresa (2015), can easiliy require
100,000 seperate estimation iterations, without including any bootstrap iterations! This means that
all the code in these iterations needs to be as fast as possible, as the impact of just one slow line
of code could easily explode the runtime. There are a lot of techniques to optimize the runtime
of a program, in this program I have implemented the following three techniques: compilation,
parallelization and memoization4.3.

Python is an interpreted programming language, this means that all the code written is run
directly by an interpreter, which reads the code and then runs it, instead of directly running the
machine code. This has some major advantages for example not requiring compilation and dy-
namic typing. However, this generally comes at the cost of performance (Rossum, 1997). How-
ever, it is (in some cases) possible to compile Python code. This has been shown to deliver large
gains if done properly. There are two main methods to compile Python code, the first is ahead-of-
time (AOT) compilation and the second is just-in-time (JIT) compilation. AOT compilation can
be achieved by using the Cython compiler (Behnel et al., 2011), however this can often be quite
complex as code rewrites are necessary and different processing units need different compilation
procedures. Often quite similar results can be achieved by using JIT compilation, where the first
time a part of the code is run, it gets compiled and stored, and every time after that the same code is
reached the compiled version is used. Using JIT compilation can often require some small rewrites
in the Python code, however these are often much easier than rewrites for AOT compilation. JIT
compilation can be used in Python by using the Numba-package (Lam et al., 2015).

4.2Note that computation using 32 bit floating point numbers is often not significantly faster for CPUs, but mainly has
less memory usage

4.3This is in fact the correct spelling of this word.
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Almost all new computers contain multiple processing units with multiple cores, allowing the
computer to do multiple of the same computations at the same time. In a previous thesis the
advantages of using these multiple processing units has been explored (Heijer, 2023), which has
shown that using these techniques can in many cases lead to a large speedup of the programs. Par-
allelization can easily be implemented in many parts of the code, such as the Bootstrap iterations.
Parallelization in Python is built-in and does not require any additional packages.

Finally, for function calls that are expensive (i.e., quite slow) and always return the same output
for the same input, it can be advantageous to store the results of these function calls and return
those values instead of doing the expensive computations again. This only makes sense in very
specific circumstances but can delivery very large speedups when implemented correctly (Michie,
1968).
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5 Package Usage

Thusfar, only the theoretical background has been explored, but this thesis also introduces a Python
package for all these methods. This section will give a reasonably detailed description of how the
package should be installed and how it should be used. Additionally, a more recent version of the
documentation is available online at: https://groupedpaneldatamodels.michadenheijer.com.

5.1 Installation

Installation of the package is fairly straightforward for (most) machines with Python installed. As
the package is published on the Python Package Index (PyPI)5.1, it can easily be installed using
the following command.

pip install groupedpaneldatamodels

If there are updates available can these be installed using:

pip install --upgrade groupedpaneldatamodels

In most cases it is advised to run the second command, as it automatically upgrades the dependen-
cies of your machine if the package requires a newer version of a certain dependencies. To down-
load the latest development version of the package, it can simply be downloaded from Github and
be installed as follows:

git pull https://github.com/michadenheijer/groupedpaneldatamodels.git

cd groupedpaneldatamodel

pip install .

On most Windows machines the pip command may not be available, thus the alternative python
-m pip may have to be used. In the case that multiple versions of Python are installed pip3 may
have to be used.

5.2 Usage

Importing the package into any Python file is also relatively simple and can be done using:

import groupedpaneldatamodels as gpdm

After importing the package into your code you can start using the package! An important detail,
the package expects all Panel Data to be in a 3D numpy-array, where X is of size N × T ×Kand
Y of size N ×T × 1. Future work could allow the package to also support other input types (such
as Pandas DataFrames), however to limit complexity only this input format is supported.

5.2.1 Grouped Fixed Effects

As was previously described, there are two Grouped Fixed Effects models implemented. As both
models are quite similar, they are implemented in the same class: GroupedFixedEffects.
Usage of this class is quite similar to usage of a model implemented in statsmodels. For example
a GFE model could be used as follows.

5.1Additionally it can be visited on https://pypi.org/project/groupedpaneldatamodels/
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model_gfe = gpdm.GroupedFixedEffects(y, x, 3, use_bootstrap=False)

model_gfe.fit(max_iter=100, tol=1e-4)

model_gfe.summary()

Code 1: Example usage of GroupedFixedEffects class

This defines a Grouped Fixed Effects model, to be estimated using the the default Bonhomme
and Manresa (2015) model. Each model has different variables and settings that can be modified,
they are described below, however there are some common parameters that need to be set for each
model.

Parameter Type Required Default Description

dependent np.ndarray Yes - A 3D array of Y , structured by individual, time, and
variables.

exog np.ndarray Yes - A 3D array of X , used as the regressors in the
model.

G int Yes - The (maximum) number of groups that are esti-
mated.

use_
bootstrap

bool No False Whether or not to estimate the standard errors using
the Bootstrap method.

model str No "bonhomme_
manresa"

Which model to use: "bonhomme_manresa"
or "su_shi_phillips".

heterogeneous
_beta

bool No True Whether β is grouped-heterogeneous or completely
homogeneous if set to False.

entity_
effects

bool No False Whether to include individual (entity-specific) fixed
effects in the estimation.

Table 5.1: Overview of parameters that may be defined for each Grouped Fixed Effects Model

Fitting Each model additionally has their own parameters that may be set, these parameters
have to be set in the .fit() command. Below are the specific parameters that are able to be set
for the Bonhomme and Manresa (2015) model. The default parameters try to ensure that proper
convergence will always be reached, however in the case that this procedure needs to be called
many times, it may be advantageous to modify these parameters.

Parameter Type Required Default Description

n_boot int No 50 Number of Bootstrap replications

max_iter int No 10,000 Maximum number of optimization iterations

tol float No 10−6 Acceptable tolerance to stop

gfe_
iterations

int No 100 Number of different starting points considered

enable_vns bool No False Usage of the VNS algorithm as described in the
paper (not recommended for heterogeneous
_beta = True, as this combination is very
slow)

Table 5.2: Bonhomme and Manresa (2015)-specific parameters
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Similarly, Su, Shi, et al. (2016), also has its own specific settings.

Parameter Type Required Default Description

kappa float No 0.1 κ as described in the algorithm, changing this hy-
perparameter is highly recommended

n_boot int No 50 Number of Bootstrap replications

max_iter int No 1,000 Maximum number of optimization iterations

tol float No 10−6 Acceptable tolerance to stop

only_bfgs int No True Only use the L-BFGS optimizer, if False, then
every iteration is switched between the Nelder-
Mead and L-BFGS optimizer

Table 5.3: Su, Shi, et al. (2016)-specific parameters

Results After fitting the results are stored in the instance of the class. To just view the estimated
parameters, gfe_model.params can be called, to view the standard errors the gfe_model.

params_standard_error could be called5.2. However the easiest method to see the results of
the estimation is by calling gfe_model.summary(), which displays a statsmodels-like summary
about the estimation. By default this summary estimates the 95% confidence intervals of the
estimated coefficients, however other confidence intervals could be computed using the gfe_

model.get_confidence_intervals(alpha) function.

5.2.2 Grouped Interactive Fixed Effects

Similarly, the Grouped Interactive Fixed Effects have some parameters that need to be setup before
estimating and some parameters that are relevant during fitting5.3. There are some parameters that
are only valid for some some models. Example usage for this model could be as follows:

model_gife = gpdm.GroupedInteractiveFixedEffects(y, x, 3, use_bootstrap

=False)

model_gife.fit(max_iter=100, tol=1e-4)

model_gife.summary()

Code 2: Example usage of GroupedInteractiveFixedEffects class

5.2There are also gfe.params_bootstrap_standard_errors and gfe.params_analytical
_standard_errors if you specifically want to get the Bootstrapped or analytical standard errors.

5.3In general parameters that are set during fitting should be non-relevant hyperparameters, while the other parameters
generally need to be defined before usage.
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Parameter Type Required Default Description

dependent np.ndarray Yes - A 3D array of Y , structured by individual, time, and
variables.

exog np.ndarray Yes - A 3D array of X , used as the regressors in the
model.

G int Yes - The (maximum) number of groups that are esti-
mated.

use_
bootstrap

bool No False Whether or not to estimate the standard errors using
the Bootstrap method.

model str No "ando_bai" Which model to use: "ando_bai" or "su_ju
".

heterogeneous
_beta

bool No True Whether β is grouped-heterogeneous or completely
homogeneous if set to False.

R int No 1 Number of factors used for the "su_ju" model

GF np.ndarray[
int]

No [1, ..., 1] Number of factors used for each of the groups of the
"ando_bai" model5.4

Table 5.4: Overview of parameters that may be defined for each Grouped Interactive Fixed Effects
Model

Fitting To fit the Interactive Effects models the same gife_model.fit() needs to be called,
this works similarly to the Fixed Effects model.

Parameter Type Required Default Description

n_boot int No 50 Number of Bootstrap replications

max_iter int No 10,000 Maximum number of optimization iterations

tol float No 10−6 Acceptable tolerance to stop

gife_
iterations

int No 100 Number of different starting points considered

kappa float No 0 Uses the SCAD Penalized Linear Regression if not
set to zero, then is defined as the κ parameter used
in the SCAD Penalty

gamma float No 3.7 Defines the γ from the SCAD penalty

Table 5.5: Ando and Bai (2016)-specific parameters

Similarly, for the Su and Ju (2018), we have the following parameters.

26



Parameter Type Required Default Description

kappa float No 0.1 κ as described in the algorithm, changing this hy-
perparameter is highly recommended

n_boot int No 50 Number of Bootstrap replications

max_iter int No 1,000 Maximum number of optimization iterations

tol float No 10−6 Acceptable tolerance to stop

only_bfgs int No True Only use the L-BFGS optimizer, if False, then
every iteration is switched between the Nelder-
Mead and L-BFGS optimizer

Table 5.6: Su and Ju (2018)-specific parameters

Results The results can be shown similarly to the Grouped Fixed Effects model.

params = gife_model.params

params_se = gife_model.params_standard_errors

params_ci = gife_model.get_confidence_intervals(alpha=0.99)

gife_model.summary()

Code 3: Find and recall the results of the Grouped Interactive Fixed Effects Model

5.3 Information Criterion Selection

There are simple function available that allows for the selection of the best parameters, the grid
_search_by_ic function. This function takes the following parameters and can be used as fol-
lows:

grid_search_by_ic(GroupedFixedEffects,

param_ranges = {"G": [2, 3, 4, 5, 6]},

init_params = {"dependent": y, "exog": x},

fit_params = {"max_iter": 100},

ic_criterion = "BIC")

Code 4: Example usage of grid_search_by_ic function

Parameter Type Required Default Description

model_cls GroupedFixedEffectsModel
or

GroupedInteractiveFixedEffectsModel

Yes - Class of the type of model you want to select

param_ranges dict[str,
list]

Yes - Contains lists for each parameter of parameters to
test

init_params dict Yes - Parameters with which the class is initialized

fit_params dict No None Parameters that are passed to the fit function

ic_criterion "BIC", "AIC",
or "HQIC"

No "BIC" Which IC criterion should be used

Table 5.7: Parameters that can be used for the grid_search_by_ic function
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5.4 Expanding the Package

Implementing additional models should be relatively simple, as additional models for (interactive)
fixed effects could easily be implemented to the two main classes. Additionally, a base class
was implemented that could easily be expanded upon for new types of models. Each new model
should return (at least) the following: 1) the estimated parameters (using some sort of proper
order, to allow for Bootstrapped estimations) and 2) the estimated residuals. This would allow
most functionality of the package to used (such as automatic parameter selection using ICs or
automatic standard error calculation using Bootstrap).
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6 Verification and Numerical Reliability

Analyzing the correctness of implementations of algorithms can be quite challenging, as just look-
ing at the code often does not immediately suggest that there are any issues. Before verification
techniques were commonly used, it was very common for software packages of econometric mod-
els to produce wildly incorrect results (Longley, 1967; McCullough and Vinod, 1999; Keeling and
Pavur, 2007). To resolve this issue some benchmarks were created for specific models (Wampler,
1980; Elliott et al., 1989), however these benchmarks obviously don’t work this package as they
are specifically made for other problems.

A number of papers have suggested a few methods to asses the reliability of statistical software.
McCullough and Vinod (1999) argued that every statistical software package should do two steps
to ensure correctness and numerical reliability of estimation methods. First, all econometric and
statistical software should clearly include which mathematical methods are used. This is done to
ensure that users can decide if this method is accurate enough or at least know of potential flaws.
At the time of publication, most econometric software did not state which method was used for
estimating standard errors, potentially providing wildly incorrect results without the user knowing
it. Second, every package should include its performance over standard benchmarks if they are
available, or include benchmarks and provide the results if not. This gives users a clear estimate
about the accuracy that should be expected of the results.

The paper additionally states that appropriate Random Number Generators (RNGs) should be
used, with a long enough period. This paper introduces a Python package mainly using numpy,
it uses the PCG64 RNG (O’Neill, 2014), which has a very long period of 2128. However, RNGs
generally don’t function well when dealing with parallel code, therefore a hashing algorithm sug-
gested by O’Neill (2015) and implemented in Numpy is used.

Finally, the paper states that finally states that the critical values of each package should be
carefully considered. This package does not compute the critical values of a specific distribution
itself, but uses the critical values computed by Scipy, which automatically verifies correctness of
each of the critical values on every update (Virtanen et al., 2020).

6.1 Benchmark & Simulation Study Setup

To create a benchmark an appropriate simulation study needs to be set up. Morris et al. (2019)
created the ADEMP (Aims, Data-generating mechanisms, Estimands, Methods and Performance
Measures) framework. This framework has set up for each of the steps specific requirements to
ensure that the simulation study (i.e., benchmark) is set up appropriately and correctly.

The Aims section, should state what properties are expected from the estimation technique and
which aims would be desirable (but not required). Often it is also recommended to compare your
specific method to other methods that are not specifically designed for this problem, this could be
used to compare the performance of our estimator to other well-known methods.

The Data-generating mechanisms section should describe which DGP is used to generate the
dataset, DGPs should either be relatively simple, fairly realistic or completely unrealistic to break
a certain method. The Estimants section should state which coefficent is estimated, this could be
relevant parameters, but could also be the performance of a test, or the quality of a model selection
procedure.

The Methods part of the simulation study, should clearly state which methods are studied and
with which hyperparameters. Additionally, the paper recommends that in other commonly used
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methods should be compared to the new methods. Finally, the last section (before the results)
proper Performance measures should be used. The paper states that common performance mea-
sures are Bias, Coverage, Confidence Interval Length, Squared Errors. These measures and the
sample sizes they are based on should be clearly stated and defined.
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7 Simulation Study and Performance Evaluation

Finally, to show the quality and performance of the models implemented in the package a simula-
tion study is conducted. This simulation study attempts to show that the implementation of these
models was done properly. It attempts to show that the Python-package can accurately estimate
known DGP’s. Showing that the implementation of these models was done correctly.

Additionally, this simulation study is the first to compare the quality of inference, i.e., the
quality of the estimations of the standard errors, of Ando and Bai (2016) and the Su and Ju (2018)
models. The quality of these standard errors is compared to the basic bootstrap algorithm described
in Section 2.5.

7.1 Aims

While the goal of this thesis is not to show the validity of Grouped Panel Data Models or its
weaknesses, it does want to show that similarly to the reference papers, that the derived properties
of relevant estimators hold. Therefore our paper aims to show the following expected properties:

1. The slope estimates β̂g should be and consistent and asymptotically normally distributed for
large N,T .

2. The group memberships ĝi should be consistently estimated.

3. The estimates for standard errors, of both the Bootstrap and Analytical approaches should
be able to produce accurate 100(1− α)% confidence intervals.

4. The Information Criterion’s (IC’s) should be able to accurately select the correct model.

There are also some other aims that we would like that the implemented models have, we would
prefer these properties:

1. The slope estimates should be consistent for large N , but fixed T 7.1.

2. The Var(β̂), should be as small as possible and should be lower than a fully heterogeneous
model.

3. Every estimation should be able to run in a reasonable time frame and should not scale
exponentially.

7.2 Data Generating Processes

We consider three Data Generating Processes (DGPs). Each of these DGP’s is specifically created
to test the performance of a specific model.

Of each DGP nsim = 500 simulations are generated which are stored within the replication
code7.2. This allows for different models to be run on the same data set and it allows other users

7.1We are explicitly not aiming for asymptotic normality or any other distribution for large N , fixed T as most papers
have not derived these quantities (except notably for Bonhomme and Manresa, 2015, though these are not implemented).

7.2For some models due to time constraints the estimation nsim = 200.
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to exactly replicate the same results. Each simulation is generated with 64-bit floating point pre-
cision, due to limited storage and memory they are stored with 16-bit floating point precision7.3.

Each simulated data set is generated with some different parameter settings, allowing us to see
the effects on the quality of estimation. For each DGP the size of the data set is either N = 100

or N = 200, allowing us the see the effect of having a larger data set. Similarly, each data set is
generated for either T = 20 or T = 50, allowing us to see the what the effect of longer data sets
is. Additionally, to see the effect that multiple groupings have on the quality of estimation G = 3

or G = 6. For simplicity and similarity with the reference papers, xit has three parameters, thus
K = 3.

7.2.1 Grouped Fixed Effects

The first DGP is aimed at the model introduced by Bonhomme and Manresa (2015), this DGP
has βγ = [γ, γ, γ], meaning that β1 = [1, 1, 1], it also has εit ∼ N (0, 1). Additionally, αgit =

0.8αgit−1 + ηgit, where ηgit ∼ N (0, 1). Finally, gi ∼ U({1, ..., G}).

yit = x′itβgi + αgi,t + ϵt,i (7.1)

7.2.2 Grouped Interactive Fixed Effects

The second DGP is very similar to the previous one, with the same parameters, however now with
an Interactive component, specifically created for Ando and Bai (2016) and Su and Ju (2018). Each
group has just one factor, which is similarly defined as αgit, meaning that fgit = 0.8fgit−1 + ηgit,
where ηgit ∼ N (0, 1). Finally, λgii = U(1, 5).

yit = x′itβgi + λgi,if
′
gi,t + ϵt,i (7.2)

7.2.3 Grouped Fixed Effects with Individual Effects

The final DGP is specifically created for Su, Shi, et al. (2016), where βg and εit are defined as
previously. However, this DGP is the first to include individual effects, however for simplicity
these are defined as αi = 0 ∀i.

yit = x′itβgi + αi + ϵit (7.3)

7.3 Estimands and other targets

There are a three main targets of this simulation study. The first is the point estimate of βg, its
estimated standard error and 95% confidence interval (both are of the bootstrapped and analytical
quantities). The second is the quality of the estimated grouping gi. Finally, we are interested in
the quality of different Information Criteria to select the correct model.

7.3This small floating point downgrade could result in slightly higher than expected error rates, though these differ-
ences are likely very small and insignificant.
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7.4 Methods

Each simulated data set is estimated by the relevant model using the estimation methods described
in Section 2. For each data set the standard errors are estimated using the analytic method, however
for data sets where G = 6 the estimation of the standard errors using Bootstrap is too slow
for many repetitions, thus only analytical standard errors are considered. For clustering-based
models 200 Bootstrap replications are used, while for the penalty-based models just 100 Bootstrap
replications are used.

To show the relevance of Grouped Panel Data Models, these models and their estimation
techniques are compared to a standard heterogeneous panel data model. A standard heterogeneous
model as described by Baltagi (2021, pp. 269–272) could be used,

yit = x′itβi + αi + εit, (7.4)

where each iteration has their own slope coefficients βi and each individual has its own individual
effect αi. This model could easily be estimated using a standard OLS estimation for each indi-
vidual separately. Similarly, the standard errors and confidence intervals could easily be estimated
using standard techniques, where the standard errors are computed as follows,

ŜE(β̂j) =
√
[σ̂2(X ′X)−1]jj

CI95%(β̂j) =
[
β̂j − 1.96 · ŜE(β̂j), β̂j + 1.96 · ŜE(β̂j)

]
7.5 Performance Metrics

To compute the performance and quality of the different methods, different performance metrics
are used, which are all defined in this section. First, the performance metrics to analyze the
consistency and quality of the estimation of β̂ are discussed. To measure the consistency of each
estimation, we compute the estimated bias first. The bias is defined as follows,

Bias =
1

nsimKG

nsim∑
i=1

K∑
j=1

G∑
g=1

β̂
(i)
gj − βgj . (7.5)

To get an estimate of the quality of the estimation the Root Mean Squared Error (RMSE) is used.
This is defined as follows,

RMSE =

√√√√ 1

nsim

nsim∑
i=1

∥∥∥β̂(i) − β
∥∥∥2. (7.6)

To compute the quality of the confidence intervals, the coverage is computed. The computed
coverage represents the fraction of confidence intervals that contain the true parameter. In case of
the 95% confidence interval, we expect a coverage of 95%.

Coverage =
1

nsim

nsim∑
i=1

K∑
j=1

1
(
βj ∈ CI95%(β̂

(i)
j )
)

(7.7)

As we prefer smaller confidence intervals, which means that the model has more power, we also
compute the average Confidence Interval sizes.
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n t G k corr bias rmse conf. size conf. size. boot. coverage coverage boot. fit duration

100 20 3 3 1.000 0.001 0.040 0.149 0.154 0.934 0.939 0.040
100 50 3 3 1.000 -0.001 0.025 0.094 0.097 0.932 0.939 0.120
200 20 3 3 1.000 -0.001 0.027 0.106 0.108 0.947 0.948 0.077
200 50 3 3 1.000 0.000 0.018 0.067 0.068 0.944 0.943 0.208
100 20 6 3 0.999 -0.002 0.063 0.207 - 0.903 - 1.571
100 50 6 3 0.986 -0.001 0.117 0.133 - 0.903 - 4.449
200 20 6 3 1.000 0.001 0.041 0.150 - 0.925 - 4.118
200 50 6 3 0.997 -0.003 0.058 0.095 - 0.932 - 9.806

Table 7.1: Results for Bonhomme and Manresa (2015) with DGP 1

Avg. CI Size =
1

nsim

nsim∑
i=1

K∑
j=1

G∑
g=1

(
β̂
(i)
upper,jg − β̂

(i)
lower,jg

)
(7.8)

To get the ratio of individuals that are classified correctly, we use the Correct Classification Rate
(CCR). Since for each iteration gi is unique, it needs to be compared to the correct grouping g

(j)
i .

CCR =
1

nsim

nsim∑
j=1

1

n

n∑
i=1

1
(
ĝ
(j)
i = g

(j)
i

)
(7.9)

Finally, to compute the average runtime a simple average is computed, in this definition τ (i) is the
runtime of iteration i.

Average Runtime =
1

nsim

nsim∑
i=1

τ (i) (7.10)

7.6 Results

First we analyze the results of the grouped models, then we compare those results with the results
of a fully heterogeneous model.

7.6.1 Grouped Models

The first implementation of the model proposed by Bonhomme and Manresa (2015), appears to
perform quite well as can be seen in Table 7.1. We can clearly see that the model provides a
consistent estimate as the bias is (near) zero for all combinations. We can also see that the quality
of estimations increases the fewer groupings are required and the more data is available, as the
RMSE tends to be lower. Interestingly, when there are more groupings required, increasing the
time dimension does not improve estimation. We can also clearly see that estimated analytic
standard errors tend to slightly underestimate the true standard errors, as they do not quite reach the
95% coverage they should provide. The Bootstrapped standard errors are slightly better, providing
slightly better coverage and almost reaching the 95% coverage that they should provide. Finally,
we can see that increasing the number of data points does very much increase the estimation time,
suggesting that for very large data sets using this method may not be feasible.
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n t G k corr bias rmse conf. size conf. size boot. coverage coverage boot. fit duration

100 20 3 3 1.000 -0.002 0.075 0.237 0.266 0.922 0.946 0.242
100 50 3 3 1.000 -0.001 0.035 0.124 0.131 0.931 0.941 0.357
200 20 3 3 1.000 0.003 0.048 0.164 0.175 0.931 0.948 0.288
200 50 3 3 1.000 -0.000 0.024 0.087 0.090 0.934 0.943 0.520
100 20 6 3 0.990 0.006 0.143 0.340 - 0.896 - 6.526
100 50 6 3 0.997 0.003 0.071 0.175 - 0.916 - 8.659
200 20 6 3 1.000 -0.000 0.073 0.244 - 0.923 - 7.091
200 50 6 3 1.000 -0.000 0.035 0.125 - 0.930 - 12.145

Table 7.2: Results for Ando and Bai (2016) with DGP 2

n t G k corr bias rmse conf. size conf. size boot. coverage coverage boot. fit duration

100 20 3 3 0.996 -0.002 0.065 0.176 0.285 0.816 0.939 0.981
100 50 3 3 1.000 -0.001 0.031 0.102 0.133 0.899 0.956 2.795
200 20 3 3 0.997 0.001 0.057 0.122 0.163 0.761 0.867 2.421
200 50 3 3 1.000 -0.000 0.024 0.071 0.088 0.861 0.920 6.649
100 20 6 3 0.942 0.003 0.253 0.345 - 0.630 - 1.896
100 50 6 3 0.981 0.001 0.178 0.192 - 0.712 - 5.286
200 20 6 3 0.963 -0.001 0.201 0.230 - 0.539 - 5.272
200 50 6 3 0.996 0.004 0.092 0.113 - 0.671 - 13.169

Table 7.3: Results for Su and Ju (2018) with DGP 2

The results of the Ando and Bai (2016) implementations are very similar to the results of
the Bonhomme and Manresa (2015) implementation as can be seen in Table 7.2. The model
also appears bo be consistent, although this implementation does not seem to suffer from worse
estimation performance (as measured by the RMSE) for larger data sets as the previous model
does. Comparing this model with the previous model, we can see that the RMSE is slightly
higher, meaning that it performs slightly worse than the previous model.

We can also clearly see that the estimated analytical standard errors underestimate the true
standard error, which again the Bootstrapped errors don’t appear to suffer from, providing a
slightly better standard error estimation at the cost of extra compute time.

In Table 7.3 we can see the results of the implementation of the model proposed by Su and Ju
(2018). First, it appears to also be consistent, and able to accurately detect the groupings as each
previous model was able to do. It does appear to perform slightly worse than the Ando and Bai
(2016) model for large data sets, though it also appears to be effected much less by an increase in
data set size. Meaning that larger data sets may be much faster to estimate with this model than
with one of the other two models. Finally, the standard errors of appear to be consistently under
estimated, as analytical coverage is way to low, and the Bootstrapped coverage is low in certain
specifically for the case that N = 200 and T = 20.

Finally, we look at the implementation of the model proposed by Su, Shi, et al. (2016) in Table
7.4. We can clearly see that it appears to struggle with the same data sets as the previous models
and it performs well when there is more data available or there are fewer groups to that need to be
estimated. Interestingly, it appears that this model is the slowest of each of these models, which
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n t G k corr bias rmse conf. size conf. size boot. coverage coverage boot. fit duration

100 20 3 3 0.999 -0.001 0.055 0.156 0.196 0.845 0.916 0.952
100 50 3 3 1.000 -0.000 0.030 0.097 0.113 0.892 0.935 2.184
200 20 3 3 0.999 -0.000 0.043 0.109 0.133 0.796 0.874 2.971
200 50 3 3 1.000 0.001 0.022 0.068 0.078 0.877 0.908 7.189
100 20 6 3 0.982 -0.002 0.163 0.259 - 0.701 - 2.167
100 50 6 3 0.999 0.002 0.082 0.149 - 0.794 - 4.526
200 20 6 3 0.991 -0.008 0.131 0.175 - 0.573 - 9.444
200 50 6 3 1.000 -0.001 0.055 0.101 - 0.705 - 16.441

Table 7.4: Results for Su, Shi, et al. (2016) with DGP 3

n t G k bias rmse conf. size coverage

100 20 3 3 0.001 0.425 1.727 0.950
100 50 3 3 -0.001 0.269 1.062 0.952
200 20 3 3 -0.001 0.431 1.751 0.950
200 50 3 3 0.001 0.270 1.068 0.950
100 20 6 3 -0.001 0.425 1.730 0.952
100 50 6 3 0.000 0.270 1.064 0.949
200 20 6 3 0.002 0.430 1.747 0.950
200 50 6 3 -0.000 0.271 1.071 0.950

DGP 1

bias rmse conf. size coverage

0.001 0.936 3.619 0.950
-0.001 0.559 2.102 0.951
-0.001 0.941 3.633 0.950
-0.000 0.562 2.110 0.950
-0.002 0.937 3.621 0.951
-0.001 0.562 2.107 0.951
-0.003 0.939 3.624 0.949
0.000 0.561 2.107 0.950

DGP 2

bias rmse conf. size coverage

-0.000 0.259 1.062 0.949
-0.001 0.149 0.594 0.950
0.000 0.259 1.060 0.950
0.000 0.149 0.593 0.950

-0.000 0.258 1.061 0.951
0.000 0.149 0.593 0.950

-0.000 0.258 1.060 0.951
-0.000 0.149 0.594 0.949

DGP 3

Table 7.5: Results for the heterogeneous model.

is somewhat unexpected as this model should be easier to estimate than the Su and Ju (2018). We
finally notice that the analytical standard errors (which are exactly the same as used by Bonhomme
and Manresa, 2015 and thus are correctly implemented), perform very poorly. The Bootstrapped
standard errors perform slightly better, though they also understate the true standard errors.

7.6.2 Fully Heterogeneous Model

Comparing the grouped models with fully heterogeneous models, clearly shows the value of the
Grouped Panel Data Models. In Table 7.5 we can see these results for all three DGPs. The model
is clearly consistent as the estimates appear to not have any bias. However, we can clearly see
that the RMSE, i.e., the quality of the estimation is much worse, though the larger T , the smaller
effect this has. We can see that the coverage appears to be spot on the 95%, as should be expected,
though to reach this coverage, confidence intervals need to be much bigger, as we can clearly see
that the coverage size is approximately 4-20 times the size of compared to the grouped models.
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8 Discussion and Conclusion

This paper successfully introduces the groupedpaneldatamodels-package, a simple to use
Python package that is the first that makes Grouped Panel Data Models available to the platform.
This package is relatively easy to use, as it hides most of the complexity of all of the implemented
models behind a clear structure. This package implements advanced algorithms and uses special-
ized techniques that improve estimation speed and stability, such as JIT-compilation and efficient
linear algebra by using LU decomposition over SVD for Bootstrapped estimations. Additionally,
this package provides a method for automatic model selection using Information Criteria, allowing
researchers to easily select the correct hyperparameters for each model. Combining all these tech-
niques into a single package allows many more researchers to use Grouped Panel Data Models,
whereas this was previously much more difficult, as full implementations of Grouped Panel Data
models were rare and often not fully complete.

This thesis shows that the specific implementation of these models is correct and fairly ac-
curate. All our results appear to also be closely aligned with already published papers. For the
model introduced by Bonhomme and Manresa (2015) we get near identical results for the bias,
additionally the RMSE of our implementations are very close to those suggested by Su, Shi, et al.
(2016) and Su and Ju (2018). Suggesting that out implementations are correct.

In a simulation study for using this package, we have found that these grouped models are
able to capture slope heterogeneity much better than fully heterogeneous models for our specific
Data Generating Processes. As our the models that were implemented in this package were able
to tend wildly outperform the fully heterogeneous model when comparing estimation quality by
RMSE, showing that grouped models can lower the RMSE by a factor of 2 - 20. This improved
performance is mainly visible for data sets where T is small G is limited and N is large. This
means that these estimators are much more efficient for data sets where there are a lot of individuals
but for each individual there just a few data points available, the models considered in this thesis
perform exceedingly well. It should be noted that this simulation study was performed with well-
specified models, meaning that that performance of these models for real world panels, which are
rarely well-specified.

This paper was also the first paper, to our knowledge, to do a simulation study on the quality
of the inference of the models introduced by Ando and Bai (2016) and Su and Ju (2018). We have
found that the standard large N,T asymptotic results provide decent estimations for the clustering-
based models, however they provide bad or even very bad results for the penalty-based models.
This paper suggests using a Bootstrap method get more accurate estimations of the standard errors,
which have outperformed analytical standard errors in providing better coverage.

The package of this thesis also has some general limitations that are important to consider.
First, due to the computational complexity of Grouped Panel Data Models, estimation times, es-
pecially when using Bootstrapped standard errors, can be slow. Finetuning the hyperparameters of
these models can help improve estimation speeds, for large data sets i.e., N > 1000, T > 100, es-
timation duration may be too large. We have also found that as G is increasing numerical stability
can break down, notably for when T is small.

There are also some other limitations in this package that are not just the caused inherently by
Grouped Panel Data Models themselves. For example, there is no support for Unbalanced Panel
Data models, while these models make up the large marjority of available panel data set. Future
support for unbalanced panel data should be relatively easy to implement, but was not implemented
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due to time constraints and overall limitations. Another large improvement to this package could
be made by introducing support for non-linear models, this could be implemented relatively easily
by implementing linking functions. Additionally, this package only implements the basic large
N,T standard errors, while large N , fixed T standard errors may actually be preferable in most
situations. This package also provides Bootstrapped standard errors, but assumes normality of the
parameters, which does not have to be the case for medium N and small T panels. Additionally,
there are also only analytical errors available for individual effects and grouped individual effects,
while these could also benefit from Bootstrapped standard errors.

Finally, there are some small usability problems that can make this package somewhat difficult
to use. For example the package only supports a very specific inputs by requiring three dimen-
sional numpy-arrays, which are not storing any labels or other data about these inputs that could be
relevant. This makes it a slight hassle to verify which parameter belongs to each input. Small im-
provements such as these could make the package even easier to use and allow the implementation
to reach a much wider range.

There are many improvements that could be make to the package that this paper introduces.
However, it still has succesfully implemented four different Grouped Panel Data Models in an
simple to use package. Future research on implementations of Grouped Panel Data Models could
focus on two main targets. The first is implementing additional Grouped Panel Data Models
to this (or other) package. Due to time constraints many models were implemented, interesting
models that could be implemented could be based on Ke et al. (2016), Bonhomme, Lamadon,
et al. (2022), Mehrabani (2023), Lumsdaine et al. (2023), or Mugnier (2024). Additionally, both
Su, Shi, et al. (2016) and Su and Ju (2018) introduce a Penalized GMM estimator, which is able
to deal with endogenous regressors, which was also not included in this package. Future work on
the implementation of Grouped Panel Data models, could also focus on removing the limitations
previously stated. For example, implementing support for unbalanced panels, could make this
package much more usable for real-wold data sets.
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A Bonhomme and Manresa (2015)

A.1 Individual-Effects Extension

The individual effects extension suggested by Bonhomme and Manresa (2015), is defined as fol-
lows.

yit = x′itβgi + αgi,t + µi + εit, i ∈ {1, ..., N} (A.1)

t ∈ {1, ..., T}

To estimate this model the following minimization problem needs to be solved,

QBM,ind(β, α, g) =
N∑
i=1

T∑
t=1

(
yit − x′itβgi − αgi,t − µi

)2 (A.2)

(β̂, α̂, ĝ, µ̂) = argmin
(β,α,g,µ̂)∈B×AGT×ΓG×M

QBM(β, α, g, µ). (A.3)

To estimate this model it is generally preferred to just demean both y and x first, by getting
ỹit = yit − ȳi and x̃it = xit − x̄i. Then run the one of the provided algorithms first on ỹ and x̃.
And finally retrieving the individual effects by setting µ̂i = ȳi − x̄′iβ̂ĝi .

A.2 Variable Neighborhood Search

The Variable Neighborhood Search algorithm described by Bonhomme and Manresa (2015) is
defined as follows.

1. Start with some feasible starting values for β(0), α(0). Set j = 1.

2. Perform one assignment step of the original algorithm to obtain initial groupings g(0).

3. Set n = 1.

4. Do a Neighborhood jump and a Local Search

(a) Neighborhood Jump: Randomly select n units and move them to another group and
perform an update step from the original algorithm.

(b) Local Search: Systematically check if a relocation of a single individual to another
groups improves the objective function. If it does, return to Step 3. If it does not, set
n+ = 1 and return to Step 4. If n > 10, then no more improvements can be made and
continue to the next step.

5. Set j+ = 1 If j > max_iter, then stop, else return to Step 2.

Usage of this algorithm is encouraged under the assumption that β is homogeneous, but highly
discouraged otherwise as it is very slow.
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B Ando and Bai (2016)

B.1 Homogeneous Model

The homogeneous model proposed by Ando and Bai (2016), is defined as follows,

yit = x′itβ + f ′
gi,tλgi,i + εit, i ∈ {1, ..., N}, (B.1)

t ∈ {1, ..., T}.

The objective function and algorithm to compute this model is the same as the algorithm proposed
in the main text, however each βĝi , should just be replaced with the homogeneous coefficient β.

B.2 High Dimensional Model

The high-dimensional model proposed by Ando and Bai (2016), has an objective function that is
defined as follows,

QAB(β, f, λ, g) =
N∑
i=1

T∑
t=1

(
yit − x′itβgi − f ′

gi,tλgi,i

)2
+NT · pκ,γ(|β|), (B.2)

pκ,γ(|βj |) =


κ|βj | if |βj | ≤ κ,
γκ|βj |−0.5(β2

j+κ2)

γ−1 if κ < |βj | < γκ,
κ2(γ2−1)
2(γ−1) if γκ ≤ |βj |,

(B.3)

where the penalty is the well-known SCAD penalty as discussed by Fan and Li (2001). This high
dimensional model is estimated by the Bertrand et al. (2022)-package, and replaces the standard
OLS estimations in case it is used (Bertrand et al., 2022).
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